

CARBONYL FLUORIDE FORMATION BY CW—CO₂ LASER-INDUCED AND SULFUR HEXAFLUORIDE-SENSITIZED DECOMPOSITION OF HEXAFLUOROACETONE

Josef POLA^a, Pavel ENGST^b and Milan HORÁK^b

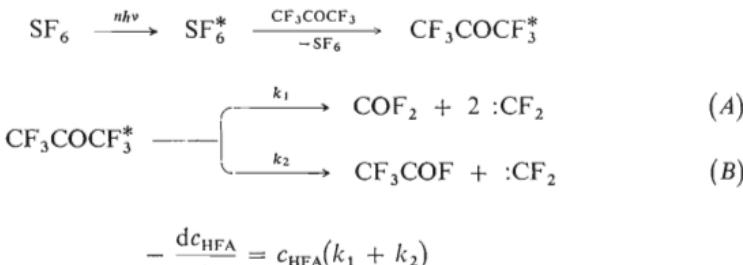
^a Institute of Chemical Process Fundamentals,

Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol and

^b J. Heyrovský Institute of Physical Chemistry and Electrochemistry,

Czechoslovak Academy of Sciences, 121 38 Prague 2

Received October 8th, 1980


The *cw*-CO₂ laser-induced gas phase decomposition of hexafluoroacetone sensitized with sulfur hexafluoride (both 0.7—5.2 kPa) affords, besides perfluorinated hydrocarbons and minor amounts of trifluoroacetyl fluoride, carbonyl fluoride the formation of that obeys first-order kinetics and is favored with higher SF₆ content.

Hexafluoroacetone undergoes¹ two thermal reactions. At temperatures near 550°C a first-order decomposition involving direct rearrangement rather than a radical mechanism occurs to give hexafluoroethane and carbon monoxide. The same products were also observed in photochemical² and CO₂ pulsed laser-induced^{3,4} processes. At 600°C and above a second mode of decomposition predominates including expulsion of difluorocarbene; the products are trifluoroacetyl fluoride and compounds derived from difluorocarbene.

We demonstrate that the irradiation of hexafluoroacetone (HFA) with a *cw* CO₂ laser focused beam (laser operating on the *P*(34) line of the 00°1→10°0 transition with 8 W output) in the presence of SF₆ as a sensitizer of the laser radiation (total pressure 2.3—6.4 kPa) yields, along with perfluorinated hydrocarbons C₂F₆, C₃F₆, and C₃F₈, carbon monoxide and trifluoroacetyl fluoride, also carbonyl fluoride. CO and C₂F₆ are produced in negligible amounts (less than 5 per cent of HFA decomposed). As for the perfluorinated hydrocarbons, the major product is C₂F₄ whose yield is roughly 15 times higher than that of C₃F₆. The COF₂/CF₃COF ratio markedly increases from 1 to more than 30 with molar % SF₆ in the initial HFA/SF₆ mixture increasing from 10 to 90. We followed this reaction in a cylindrical Simax glass tube (10 cm path length, 3 cm *i.d.*) fitted with NaCl windows using infrared spectrophotometer and gas-liquid chromatograph. We believe that COF₂ is not formed by a reaction of difluorocarbene with glass surface since the HFA decomposition reported proceeds in the same fashion in metal (stainless steel) cell, too.

Kinetic measurements reveal that constant product ratio COF₂ : CF₃COF holds for the entire decomposition (~70—95% conversion) and depends only on the HFA/

/SF₆ ratio chosen. HFA decomposes by a first-order reaction, and addition of hydrogen to the interacting HFA-SF₆ system does not lead to formation of CF₃H. Disregarding the minor HFA decomposition fashion leading to CO and C₂F₆, we may suggest that mainly two-fold branched reaction takes place. This reaction can be suggested to follow the activation of SF₆ by the laser radiation proceeding by a collisional mechanism and an interaction of properly activated SF₆^{*} with HFA to form sufficiently activated HFA* (Scheme 1).

SCHEME 1

Relative rate constants of the two individual pathways (A) and (B) therefore govern the product (COF₂ and CF₃COF) composition. Their absolute values, calculated on the basis of the COF₂/CF₃COF product ratio are, as shown on Fig. 1, significantly dependent on the HFA/SF₆ initial ratio. It is shown that both reactions (A) and (B) increase in rate as the initial SF₆/HFA ratio increases, but when the concentration of SF₆ reaches 20 molar % only reaction (A) continues to increase in rate while reaction (B) remains at about the same rate.

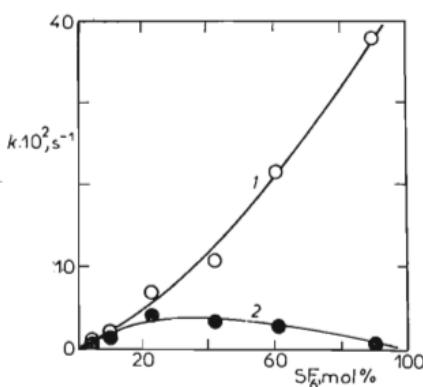


FIG. 1

Dependence of k_1 (1) and k_2 (2) upon Molar Percent of SF₆ in HFA-SF₆ System

Rate constants relate to the experimental conditions described; radiation energy was at all instances totally absorbed.

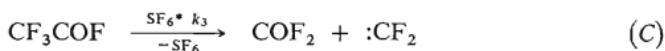

The irradiation with the $P(34)$ line of the $00^{\circ}1 \rightarrow 10^{\circ}0$ transition was found not to excite HFA alone. The fact that with increasing SF_6/HFA ratio reaction (A) continues to increase in rate whereas reaction (B) does not, can be brought about by a different control of both reactions by $V-V$ vibrational energy transfer between SF_6 and HFA. The reaction (A), favored with higher SF_6/HFA ratio can be a result of a vibrationally excited HFA formed by an effective near resonant $V-V$ vibrational energy transfer from vibrationally excited SF_6 . Reaction (B) probably proceeds along thermal pathway.

TABLE I
Comparison^a of k_1 and k_3 at Similar SF_6 /Reactant (HFA or CF_3COF) Ratios

Molar percent of SF_6 ^b	$k_1 \cdot 10^2$	$k_3 \cdot 10^2$
42	10.7	—
48	—	3.1
56	—	3.3
61	21.5	4.7

^a The radiation energy (laser output 8 W) was at all instances totally absorbed; ^b In HFA- SF_6 or $CF_3COF-SF_6$ system, total pressure 2.6—3.2 kPa.

We suppose that formation of COF_2 proceeds by a synchronous two-fold expulsion of difluorocarbene (B) and does not occur *via* trifluoroacetyl fluoride. The rate-constant k_1 markedly exceeds under comparable conditions the rate constant k_3 for the laser-induced and SF_6 -sensitized decomposition of CF_3COF (Table I). Reaction (C) was found to be first-order and SF_6 -sensitized as well.

Possible explanation of COF_2 formation including a reaction between CO and laser excited SF_6 can be rejected, since no depletion of SF_6 was observed, and, moreover, this reaction was ascertained⁵ to occur only with laser radiation of higher (16 W) output. The experiments enabling to decide whether the COF_2 formation is a result of a very high temperature inside the reaction zone or a consequence of near-resonant $V-V$ vibrational energy transfer between SF_6 and HFA are under way.

The authors thank Mr J. Vitek for technical assistance.

REFERENCES

1. Batey W., Trenwith A. B.: *J. Chem. Soc.* 1961, 1388.
2. Whytock and D. A., Kutschke K. O.: *Proc. Soc., Ser A* 306, 503 (1968).
3. Hacket P. A., Gauthier M., Willis C.: *J. Chem. Phys.* 69, 2924 (1978).
4. Avatkov O. N., Aslanidi E. B., Bachtadze A. B., Zainullin R. I., Turishev Y. S.: *Kvant. Elektron.* 6, 388 (1979).
5. Pola J.: *This Journal* 45, 2890 (1980).

Translated by the author (J. P.).